Reducing mTOR augments parietal epithelial cell density in a model of acute podocyte depletion and in aged kidneys.

نویسندگان

  • Bairbre A McNicholas
  • Diana G Eng
  • Julia Lichtnekert
  • Peter S Rabinowitz
  • Jeffrey W Pippin
  • Stuart J Shankland
چکیده

Parietal epithelial cell (PEC) response to glomerular injury may underlie a common pathway driving fibrogenesis following podocyte loss that typifies several glomerular disorders. Although the mammalian target of rapamycin (mTOR) pathway is important in cell homeostasis, little is known of the biological role or impact of reducing mTOR activity on PEC response following podocyte depletion, nor in the aging kidney. The purpose of these studies was to determine the impact on PECs of reducing mTOR activity following abrupt experimental depletion in podocyte number, as well as in a model of chronic podocyte loss and sclerosis associated with aging. Podocyte depletion was induced by an anti-podocyte antibody and rapamycin started at day 5 until death at day 14 Reducing mTOR did not lead to a greater reduction in podocyte density, despite greater glomerulosclerosis. However, mTOR inhibition lead to an increase in PEC density and PEC-derived crescent formation. Additionally, markers of epithelial-to-mesenchymal transition (platelet-derived growth factor receptor-β, α-smooth muscle actin, Notch-3) and PEC activation (CD44, collagen IV) were further increased by mTOR reduction. Aged mice treated with rapamycin for 1, 2, and 10 wk before death at 26.5 mo (≈75-yr-old human age) had increased the number of glomeruli with a crescentic appearance. mTOR inhibition at either a high or low level lead to changes in PEC phenotype, indicating PEC morphology is sensitive to changes mediated by global mTOR inhibition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Podocyte repopulation by renal progenitor cells following glucocorticoids treatment in experimental FSGS.

Prednisone is a mainstay of treatment for patients with focal segmental glomerulosclerosis (FSGS), a disease characterized by reduced podocyte number and glomerulosclerosis. Although the systemic immune-modulatory effects of prednisone are well-known, direct tissue effects on glomerular cells are poorly understood. Experimental FSGS was induced in mice with a cytotoxic anti-podocyte antibody, r...

متن کامل

Human podocyte depletion in association with older age and hypertension.

Podocyte depletion plays a major role in the development and progression of glomerulosclerosis. Many kidney diseases are more common in older age and often coexist with hypertension. We hypothesized that podocyte depletion develops in association with older age and is exacerbated by hypertension. Kidneys from 19 adult Caucasian American males without overt renal disease were collected at autops...

متن کامل

Tracking the stochastic fate of cells of the renin lineage after podocyte depletion using multicolor reporters and intravital imaging

Podocyte depletion plays a major role in focal segmental glomerular sclerosis (FSGS). Because cells of the renin lineage (CoRL) serve as adult podocyte and parietal epithelial cell (PEC) progenitor candidates, we generated Ren1cCre/R26R-ConfettiTG/WT and Ren1dCre/R26R-ConfettiTG/WT mice to determine CoRL clonality during podocyte replacement. Four CoRL reporters (GFP, YFP, RFP, CFP) were restri...

متن کامل

Parietal podocytes in normal human glomeruli.

Although parietal podocytes along the Bowman's capsule have been described by electron microscopy in the normal human kidney, their molecular composition remains unknown. Ten human normal kidneys that were removed for cancer were assessed for the presence and the extent of parietal podocytes along the Bowman's capsule. The expression of podocyte-specific proteins (podocalyxin, glomerular epithe...

متن کامل

Glomerular parietal epithelial cells contribute to adult podocyte regeneration in experimental focal segmental glomerulosclerosis

As adult podocytes cannot adequately proliferate following depletion in disease states, there has been interest in the potential role of progenitors in podocyte repair and regeneration. To determine whether parietal epithelial cells (PECs) can serve as adult podocyte progenitors following disease-induced podocyte depletion, PECs were permanently labeled in adult PEC-rtTA/LC1/R26 reporter mice. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 311 3  شماره 

صفحات  -

تاریخ انتشار 2016